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Attenlion;al Nen rocom 1)t1ting,

Ste~e Speidel

N:iaal (iomnnand Control and Ocean Surveillance Center
Research, Development, Test and Evaluation Diivision

San Diego, CA, I SA 92 152-5000

ABSTRACT

Our ultimate ,,oal is to develop neural-like cognitive sensory processing within non-neuronal s%,sttrwv
Foward this end, computational models are being developed for selectively attending the task-rele•:nta
of conipusite sensoty e-:citations in an example sound processing application. Significant stimuli partial
are selectively attended through the use of generalized neural adaptive beamformers. Computational
components are being tested by experiment in the laboratory and also by use of recordings from sco',
deployments in the ocean. Results will be presented. These computational components are being
integrated into a comprehensive processing architecture that simultaneously attends memory accordine1 to,

stimuli, attends stimuli according to memory, and attends stimuli and memory according to an ongoing
thought process. The proposed neural architecture is potentially very fast when implemented in special
hardware.

1. INTRODUCTION

Much of the processing that happens in the brain is concerned with stages of perceptual organization for
the sensory systems. These include selection processes that support the brain's ability to perceptually
separate and attend partials of sensory excitations (that may possess a high degree of relevancy to a task)
from within a composite response'. In an effort to formukate applicable models for sensory field responsive
attentional mechanisms, augmented Kohonen and Hopfield type organization and optimization processes
have been embraced to support adaptive beamforming constructs3"' . Following the popular metaphor, these
products are called "neural" adaptive beamformers (NABFs). It is suggested that these are generalizable to
function as fundamental building blocks in models of sensory processing, serving as instantiations of a
general adaptive beamforming (ABF) paradigm that is useful for understanding and producing
computational correlates of cognitive sensory systems. The beamforming paradigm easily integrates the
qualities of attentiveness and binding when it is applied to primitive partials of sensory excitations. It
emphasizes a neural coding that is based upon comparison of temporal patterns arriving on spatially
separate channels. For example, beamformers participate in the transformation of temporal codes to
spatial codes, i.e., they produce the effect that temporal patterns that arrive on separate channels are
capable of activating specific loci in a neuronal layer based on their relative activity.

Ultimately, the fundamental paradigms of the applied models must support a minimal set of functions
which compose a comprehensive computational system capable of autonomously generating percepts. The
literature on phenomenological and physiological studies of sensory systems of the brain'suggests that a
desirable object orientation on the part of the brain is supported by continual interaction between
computations occurring within somewhat specialized though interdependent nuclei. This process often
includes the integration of different sensory modalities. However, even within a single modality Q"..
considerable interactive integration. It can be said that cognitive sensory function in general encompasses
the simultaneous acts of (I) attending memory according to stimuli, (2) attending stimuli according to
Iitoui.I, d.a (3) attending stimuli and memory according to an ongoing "thought process." Thus,
attentional focussing is a key element of the cognitive sensory act. The thought process is a director of
efference or exemplar generation that expresses an object hypothesis during performance of a task or

200 / SPIF Vol- 106 Adaptive and teaming Systems (19921 0 R1)4 (87TI.g 2/$!4 of)



IL1 In ,g "\ >ua Li t ilt e . u It I ia n g n e Ir :ilt•l -i-.i. .

•\s nI application of ,he geucial concepts (tiscussed hei'., a ,unI t ce•v, 0 . I> tt, dc\ ) hltltd i
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particularly germane to sonar system, development and \ie cmmanh ",,tl It A,,w .l :n'" nt 1, 11
processing and communications in the electromagnetic domain thrOLugh app )lIcatI n of its under, isw,
principles Similarly, analogous effects are found in phe nomenoloc cal studies I| the it u man 3 i'iuai Ind
auditory systems, suggesting that there are pervading computational paradignis ,it \.kork across the ,cn ,
modalities6 .

2. MECHANISMS

2.1 Encoding

What contribution to the computational model will the proper encoding of the stimulus provide?
Biological systems make extensive use of encoding transformations. Considering the auditory system in thil,
respect, one finds the immediate spatial expression of the spectral content of an excitation along the
basilar membrane. This mapping is encoded into the common language of sensory and cortical neurons at
the hair cells. This common language, in combination with the capability of neurons to learn and
spontaneously generate bursting patterns gives rise to invariant feature representations, efference.
attentiveness, memory, a retained model of the world, and ultimately consciousness.

In our model for cognitive auditory processing, the ability to form an impression of an object, i e., to
recognize an object by some relatively invariant quality of the sound it makes, will be emphasized. In
order to achieve a frequency-shift-invariant recognition of a source of sound, thereby emphasizing timbre
over pitch for recognition purposes, the encoding such as is done by the basilar membrane and hair cells is
essential. The frequency content of each partial is represented by place in the tonotopic arrangement. For
computational purposes, the phase is encoded in the quadrature coding discussed under 2.2 Timing and
phasing. Thus it is only necessary that the temporal pattern of the propagating excitation represent the
amplitude of the partial as a function of time. As a NABF adaptively weights the incoming partials, it can
select a group of responses out of the tonotopic arrangement that exhibit the correct relative patterns of
amplitude versus time as being representative of a particular timbre or quality of the sound that is
recognizable independent of pitch. Thus the recognition of a musical instrument can be achieved
independent of what note is being played; the train whistle can be recognized independently, to a
significant degree, of the current Doppler effect (or by using the Doppler effect to advantage because the
frequency modulation itself will be a recognizable quality7).

This encoding seems to be achieved in the auditory system through the physiology of the hair cells, their
stereocilia and links. The rectified charge flow rate representation of amplitude is summated (integrated)
and the rate of cell potentiation is reflected in the rate of firing of the cell. The relationship between the
firing rate and the stimulus amplitude may have statistical properties dependent upon stimulus noise or
internal neural noise as in the stochastic resonance phenomenon .

2.2 Timing and Phasing

The fundamental ability to manipulate timing is important in encoding and selection schemes. Within
neuronal tissu,, ar nrnate ",bi!itv to •,,ppor. prpqg;n speeds and latency periods over wide uaig• C.xi..
as part of the chemistry of the physical mechanisms. To enhance the modeling of the timing action of the
computational network, both in-phase and time-lagged or phase-shifted versions of the inputs are
presented. This gives the network the ability to operate in a quasi-analytic domain.
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It is thought that in tile auditory processing Of n ,, *il i l •,•ifl :ns an inI tiAl v ,lp-1, Ili

accomplished b\ incroduction of propagation time lag mnd L ),li,,; ' ,' ic tn,." It 0hW ,- '
l.g in the proces. i|ng is reversed from that produced hy the ýp:ia:l 1 ir i.lille nt of t he •, • .
angle of incidence, then the excitations will be added in-pha'tc Tv'•uITtIg in a la.xioI luil I '
angle of incidence. Simple time lag is very effective in soatial procci,,,ig for broadband ,ii,ne.i I,.
produces appropriate phasing across all frequency componnL i'. a ',tiflnIUS SIIIIiltancoUWiý l\ i
stimulus is an aperiodic waveform then there is no response ambiguit, \ersus angle. i.e.. ther e',
processing time lag that produces the maximum correlation.

Concerning spatial mapping, and as a matter of computing convenienc.e, the question arises ! hr
under certain circumstances the timing quality of neural interaction may be modeled by phasing. c ix l
quadrature hybrid technique for each frequency band or aud 'ory fibre- It seems that in the care of the
auditory system in humans, the distance between the ears is approximately half a wavelength in air f,,r
1000 Hertz. Therefore, the maximum internal delay that would be necessary to compensate for pioplwaalvin
time differences would be less than half a period of the 1000 Ilertz wave in air as long as spatial raiappir.
is restricted to fibers responding at frequencies below 1000 Hertz. Thus, in the computational nmdcl :it
least, the analytic computation of phase can be used to represent timing for a subset of the auditors firhr,.
Another question that arises is: does biological tissue use analytic encoding?

To control phase by computing in the analytic domain, quadrature shifted excitations are included in the,
input suite on separate channels. To compute the quadrature shifted version of a finite bandv 'idth
excitation, the Hilbert transform, x(t), of an excitation, x(t), may be approximated numericall. as an FIR
Hilbert transformer filter with frequency response

H-J4 0<-<,
-ij, r<Q<0

where Q is the dimensionless frequency ' . The appropriate set of weights is conceivably learnable by a
neuronal processing element. Furthermore, if the frequency partitions are narrow, the derivative, x(t).
divided by the center frequency of the band, o,, is a good enough approximation to the quadrature input
in some cases, i.e.,

x(t) = X,(t)/1)• = jy(o)m)(o h~° jx(t) 3

where the c(co) are the complex fourier coefficients for the series approximation.

In well-known treatises on adaptive processing it has been shown that the addition of a second lag (a
third tap) of the input can increase the adaptive beamformers ability to enhance the signal-to-noise ratio
of a broadband signal in noise and interference'". The third tap is an inhibitory synapse relative to the
first tap, since it produces the negative of the first tap input at the center frequency of the band.

2.3 Hopfield-type Optimization for Selective Spatial Focussing

An optimization scheme has been developed that has the capability to adaptively adjust timing/phasing to
do spatial beamformine. An example architecture is illustrated in Fig 1 The Ilopfield cro-tar ci':uit
arrangement' is used as a computational kernel. The output voltages of the circuit are to represent the
weights on an adaptive combiner'". In order to formulate the beamformer mechanis.,; so that it responds
adaptively to inputs, the minimum mean square error problem is posed and the currents and connectivities
are solved for as functions of the inputs. The resulting expressions are

202 / SPIE Vol. 1706 Adaptive and Learning Sysrems (1992)



( J1'()4l- -'tii t)J , , (ul)Y T) 0 T;

where T is a response latency period, and v(t - T) is the output amplitude at the end of thi"'previous epoch
from the ith element. In the case of discrete time-step simulations, the expectation value is usually

evaluated by summing .

The performance of the Crossbar Adaptive Beamformer (CABF) was validated against composite sounds

of a real sonar scene impinging upon a spatially complex array. The data were obtained from the Sonar

Thinned Random Array Program (STRAP). Fig. 2 depicts the spatial arrangement of 1 1 sonobuoys that

were dropped in the Atlantic ocean. A known source was active at a distance of approximately 10 miles.

It consisted of two frequencies, seven and eleven Hertz. Figs. 3 and 4 show spectral densities from various

channels. Notice the inconsistency across the channels.

The temporal recordings made at these buoys were played into the beamformer. Fig. 5 shows the

adapted sensitivity of the CABF as a function of time. The CABF is correctly attending the desired signal

at approximately 41 degrees. These results are very good when you consider that no spectral preprocessing

was performed, i.e., the desired signal was still mixed with the other interfering components at a level of

approximately -20dB with respect to some higher frequency components (Fig. 3). More tests are being

performed in scenarios wherein interfering signals are arriving concurrently with the signal of interest and

from a variety of directions (see Mutual Inhibition below).

2.4 Adaptive Temporal Sifting

It has been demonstrated by many studies and by our own expcrience listening to monaural radio sets

that the human auditory system need not have spatial cues in order to sort out sounds that are

simultaneously incident on our ears. To give this sorting capability to a processor, a temporal sifting

procedure may be formulated using an augmented form of the Kohonen self-organization procedure". The

modified learning rule allows temporary storage of multi-dimensional n-vectors" that represent the average

vectors of st-tistically meaningful groupings or classifications of the input vectors. The action of the

so-called Multi-vector Adaptive Beamformer (MABF) is pictorially represented in Fig. 6. Temporal sifting

and short-term memory formation is accomplished according to

W"X ,I + (X---kAk(6)

where Wi is the "weight plane", expressed as a bi-vector in this case, of the ith processing element (PE) of

a layer of PEs that receives a fan-out of the inputs, a is the learning rate, Cik is the projection of the kth

input vector, xt, onto Wi, normalized to unit length, d, =i (the bar denotesnormalization), and

the symbol A denotes the wedge product. For the case of temporal learning, the input vectors are formed

from a tapped delay line.

2.5 Quasi-recursive and Hebbian characteristics

The functional qualities of continuity, accommodation, and memory are supported by quasi-recursive

(QR) and Hebbian arrangements whereby the adaptive mechanisms receive feedback from the output of the

total adaptive process. Both types are depicted in the system building blocks in figs. 7 and 8. They are

distinguishable by the connections to the adaptive mechanism.
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exeniplar that is being presented and the Content tit tin ,I t i.. feklt. I hu'!. it a quai--recur',tx N.,\ II
(QR-NAHF) finds what it is looking for in the SUnsor C'scitaln, it locks on to it, formlling a quite s~ilY
state that persists even if the desired excitation is tern poiLft litt-ertid with. l hus, die )R-NABI Ai :,1w. ,
a short-/rmedium-term memory and, what is more. cliln,.'iden taLi aitends anid %erifies the occurrence of li:.
desired excitation. An architecture for the inmplementition -t' QR.N AiHi:s IS discussed below. 'he
equat-cns (1) and (5) apply with each occurrence of x, retplaced bv V',. where the multiple Outputs, V lit.
each phase-centered on the ith sensor:

connectivitv T7,t) - - vi( tl .1 1 , T!, ----0
ion Xow I,(r) = ( -), - . t)y d

The Hlebbian arrangement correlates the feedback from the output with the corresponding inputs to
determine the synaptic modification. Equations (4) and (5) apply with changes to reflect the llebh-like
learning rule:

connectivity, T,1 (t) =-- J xv(i))v('q)d(1 , T, = 0

ion flow ,I(t) +=-vivIt(r)h(r' + -tfdf- t,(t - 't) J,_ x(r")vi(r1)d. I (I

2.6 Mutual inhibition

In order to utilize resources efficiently and have the capability of perceptually separating mixtures of
stimuli the neural elements must interact in a way that forms an organizational network. A sensory
hierarchy is one such organization (as it turns out, the most easily implemented). Building blocks for a
hierarchical assembly are represented diagrammatically in Fig. 7 and Fig. 8. The "beam group" symbols
each represent a set of beams that are derived by displacing the phase reference to particular sensors or
channels. Thus, a beam group has an output channel for each input channel. The outputs of each module
goes to the inputs of a similar module, and so on. In this kind of arrangement, elements that are
responding to a particular stimulus inhibit other elements lower in the hierarchy from responding to it and
thereby free them to respond to other stimuli that may bc concurrently active.

A neurobiological correlate to this action may be suggested by recent work regarding the
inferior-temporal (IT) cortex of the rhesus monkey". It was found that some cells in that region have a
reduced response over time to repeated stimuli while maintaining substantial response to new stimuli. It
could be hypothesized that other cells are selecting the repeated stimuli and inhibiting their propagation to
the cells in IT, thereby forming a novelty filter effect.

A hierarchical beamforming approach has been used for similar purposes. The inhibitory effect comes
about through the formation of notch beams that pass the excitation to lower levels in the hierarchy. First.
a quasi-recursive beamformer enhances its sensitivity to a particular excitation as described previously.
Next, a combination of inhibitory and excitatory connections to another element produces the notch beam.
i.e., it produces a minimization of response in the dimensional ranges where the initial elements response is
maximized,

In Figs. 9 and 10, parts a and b show the NABF receptivity as a function of the angle of incidence at
the first (highest) and second levels of the hierarchy, respectively. Two identical signals are incident at
approximately 35 and -30 degrees. In Fig. 9, the signal onsets are simultaneous and the NABF pair arc
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2.7 Adaption of recephi~e field within internal representations

If neurons can adjust their receptive fields as the ABF paradigi, suggests (by adaptiveiv weighting,
synapses) then there may be attentional shifting within the internal physical representations generated bl
sensory systems. A phenomenon that has been observed recently in visual processing in the parietal coltx
of monkeys" suggests that neurons have the ability to coordinate representational shifts with movements of
the eye. In the context of the auditory system, a related capability may account for pitch- independent
recognition of a musical instrument. Thus, in a cognitive sensory system model, the ABF paradigm wilt I)(
utilized to realize active recognition memory that can move the receptive fields of its elements along
internal representations. With regard to hearing, the action of the cochlear partition contributes to an
internal representation that preserves patterns of excitation due to the logarithmic best-frequency
dependence as a function of distance along the basilar membrane.

3. COGNITIVE SENSORY SYSTENI

The system architecture is very important, not only because it provides for the funnelling of outputs ot
one process into the inputs of another, but also because the architecture supports multidimensional
encoding transformations, e.g., topological mappings that have important relationships to external space, or
that allow reduction of the dimensianality of information to be axonally propagated. In addition, the
somewhat specialized sub-processes of the system are interdependent and require robust interconnection.
Therefore, the neural computation approach is ideal and, along with the considerations reviewed in the
INTRODUCTION and MECHANISM sections, leads to a plausible processing scheme for selectively
attending partials of complex sensory excitations.

There is an issue of fundamental importance raised by a cortical beamforming/recognition approach with
regard to generation of exemplars used for attentionally directed segmentation; the issue is whether or not
an exemplar is generated in cortex and passed to some more peripheral part to the sensory system (perhaps
an intermediate stage) via efferents. This would facilitate the attentional function at early stages as has
been observed and it would also facilitate internally generated "visualization" about sensory experience, i.e.,
it would facilitate the ability to visualize some sensory happening. This would happen without an
immediate incoming sensory prompt and would be generated out of associations made during thought
causing the enlistment of sensor areas for visualization by the production of efference to intermediate
and/or peripheral sensory areas. In either case, the efference is produced by associations made in cortex
by association between memory and afferent sensory activity in one case and between memory and thought
in the other.

In the attentional effect produced by the beamformer, the efference serves as an exemplar. Thus, a
resonance can be achieved through interaction of sensory activation, associational memory, and thought
(symbolic processing as can be generated by expert systems) to achieve focussing on portions of the sensory
activity remembered or thought (hypothesized) to be mission-relevant (or survival-relevant),

In experiments related to this issue, Metzner at Scripps Institute of Oceanography, University of
California, reported an efference within neural tissue whereby transmissions of the horseshoe bat are
compared with echoes in order to sense the Doppler and adjust its emission frequency accordingly. This is
in contrast to the idea that the bat listens to its own emission in order to generate the exemplar. This
brings up the question whether the cortical oscillations being reported in the literature are active generators
of "efference."
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A conceptual O\er% -ew and sorne key elements of a comprehensive proce,.ssng SchemC aIT
depicted in figures 12 and 13. respect ively. The conceptual overview is a simplified representation that
includes four principal functions: (1) the partitioning function, (2) the selection function. (3) pos,ýi[0 "4 ' a
motion determination, and (4) recognition. In reality, these functions are not performed separately I h-\
are provided by the interacting elements of the processing scheme.

The key elements of the processing scheme are: (I) multiple band filtering, (2) binaural
correlation, (3) spatial adaptive beamforming, and (4) temporal adaptive beamforming. In practice.
multiple-band filtering corresponding to the cochlear filtering indicated in figure 13 is performed usi;t a
scaled-wavelet formulation, providing a spread of bandwidths associated with the various best-frequenc!n-
It is recognized that this model cannot account for the sharpness of the cochlear response function near th-
best frequency". Spatial mappings have been observed in the colliculus in some vertebrates'"and i-l
cortical field Al of the cat

The processor cnntains a band-wise spatial mapping that receives excitations from the partitioned ovltput
of the cochlear process, i.e., the array of bandpass filters. The spatial mapping is supported by the
confluence of afferent excitation from the sensors at intermediate computational nuclei (labelled SOC in
Fig. 13). An adaptive mechanism supplies attentional focussing while the excitations are spatiall] mapped.
creating areas of enhanced activity. This function may be a correlate of the activity of the dorsal cochlear
nucleus (DCN). Intermediate between the cochlear processing and the band-wise spatial mapping is an
adaptive spatial process (not depicted) provided by the NABF. The darkened areas represent those
attended (emphasized) by the NABF. Thus the spatial layer acts as a sieve, passing attended stimulus
partials.

The spatial mappings can be related to the beamformer sensitivity maps of figures 9 through I I where a
single row of the spatial map as a function of time is plotted contiguously down the page. These maps
may be thought to represent the activity of a layer of beamformers with relatively fixed directional
preferences. What is the purpose of forming a topological organization of the beamformers? The
topological mapping creates an organization by which the cells for the various auditory bands which
respond to a given object in space are close together. This simplifies the projection of the output of the
spatial neurons to the cortical area where recognition is accomplished. This organization is also beneficial
in the digital signal processing application, though the units are not actually arranged spatially but are
arranged by ordinal number instead.

Notice that a loop has been formed, because the output of the spatial map projects as input to the
recognition area, the output of which was utilized in the formation of the spatial map. In the biological
case, it is not clear whether this system constantly feeds back on itself or if there is an afferent wave of
activity followed by an efferent wave or vice versa. In the case of the computational model, it can be
done either way and perhaps an investigation of this will lead to some conclusions. It could be that the
loop leads to oscillations in scomie circumstances. If it does, the relationship of the oscillations nIaN be
studied in light of recent observations '.

In the computational model, the projections from the spatial map are input to a MABF process. The
overall action of the recognition MABF is to segment and identify patterns of temporal activity across the
auditory bands which are established in the c&chlea. Each spatial stimulus segment is again segmented
temporally according to memory by creating a time dependent sensitivity. The MARF attempts to create a
stimulus partial which matches the temporal characteristics of each band, the total effect being, to match
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the spectral content as a function of time1, in cludidln Lti\ P)h1lt' \N l I i ,
the spatially oriented spectral- band npnut, as a bt, i• ltc,',c itttiun -lt, ll kiW ,
responses across the bands, i.e., tile temporal qtualiulles at" ll the ilndliidtAl I

assessed simultaneously. Frcquency modulation in thl' stimulus will a'pe)atr ;if ý , I ,I/t/ ' t-" 1 11
variation in the bands. In .he training mode, memnries are established as I u, t , , .,

The main function of the recognizer is to attend memory according to the Stinmului; ( )ri, thc tOl,,

varying activities of the attended spatial segments elicit memories, because theO Ile ' tIr ?' r Ir it ilt:
however, the system may not be attentionally focussed and the performance of the NAHI <n oinpi,'
waveforms becomes important. In some cases, individual sounds may not tle discer ned ýt I ithout intel. i %V :
of a thought process.

When a memory is elicited, a partial of the stimulus is produced through the action of the tenipoiaL
beamformer, i.e., when a beamformer wins then the temporal vector associated with that memory, is
considered a partial of the stimulus (a significant one). This partial is fed back to the spatial m appini
process, resulting in attention to or a focussing upon the spatial sector from where the partial came

4. CONCLUSIONS

Adaptive "beamforming" can play multiple roles in comprehensive sensory processing systems and serves
as a paradigm that applies as well to patterns as are observed in neuronal responses in the cochlear nucleaiv,
and superior colliculus as it does to simple spatial and temporal filtering patterns. Some neural
arrangements for adaptive beamforming outlined here have been demonstrated to function as expected on
sea-test data and in the laboratory. Building blocks for groups of mutually inhibitory beamformers were
also outlined, and the operation of a pair of them was demonstrated. They were shown to respond
correctly under the conditions of simultaneous incidence of multiple identical (or very similar) stimuli,
wherein a single NABF would be confused.
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